Journal of Organometallic Chemistry, 427 (1992) 213–230 Elsevier Sequoia S.A., Lausanne JOM 22421

Neue selenreiche 1,3-Dichalkogenol-2-selone via 4,5-Dilithio-1,3-dichalkogenol-2-selone

Helmut Poleschner

Universität Potsdam, Projecktgruppe Naturstoffe (KAI e.v.) bei der Universität Potsdam, Stahnsdorfer Damm 81, O-1532 Kleinmachnow (Deutschland)

Reiner Radeglia

Analytisches Zentrum Berlin, Rudower Chaussee 5, O-1199 Berlin (Deutschland)

und Joachim Fuchs

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstr. 34-36, W-1000 Berlin (Deutschland)

(Eingegangen den 30. August 1991)

Abstract

1,3-Dithiole-2-thione (1), 1,3-diselenole-2-selone (2), 1,3-thiaselenole-2-thione (3), 1,3-dithiole-2selone (4), 1,3-diselenole-2-thione (5) and 1,3-thiaselenole-2-selone (6) are dilithiated with lithium diisopropyl amide in the 4/5 position, followed by selenation (thiolation) and complexation of the resulting heterocyclic diselenolates (dithiolates) to the zinc bis-chelates (tetrabutylammonium or tetraphenylphosphonium salts).

These zinc complexes react with benzoyl chloride to the corresponding selenole and thiole esters. It is noteworthy that the heterocyclic thiones with one or two ring selenium atoms undergo ring transformation (Dimroth rearrangement) during the lithiation chalcogenation sequence, whilst the thione sulfur and one ring selenium atom change their places: $3 \rightarrow 1,3$ -dithiole-2-selone-4,5-diselenolate or dithiolate structure, $5 \rightarrow 1,3$ -thiaselenole-2-selone-4,5-diselenolate structure. This observed rearrangement is verified by independent synthetic pathways. The corresponding identical zinc chelates 12 and complex 18 result from the precursors 3 and 4, and 5 and 6, respectively. Trapping experiments support the conclusion that this rearrangement takes place already during lithiation. The zinc chelates and thiole and selenole esters are characterized in detail by IR and above all by ¹³C and ⁷⁷Se NMR spectroscopy, including NMR shift values of the precursor heterocycles. The X-ray crystal structure determination of bis(tetraphenylphosphonium)-bis(1,3-thiaselenole-2-selone-4,5-diselenolato) zincate (18), obtained from 5, shows the rearrangement of 5 to the 1,3-thiaselenole-2-selone partial structure in 18.

Correspondence to: Dr. H. Poleschner, Universität Potsdam, Projektgruppe Naturstoffe (KAI e.v.) bei der Universtät Potsdam, Stahnsdorfer Damm 81, O-1532 Kleinmachnow, Deutschland.

Zusammenfassung

1,3-Dithiol-2-thion (1), 1,3-Diselenol-2-selon (2), 1,3-Thiaselenol-2-thion (3), 1,3-Dithiol-2-selon (4), 1,3-Diselenol-2-thion (5) und 1,3-Thiaselenol-2-selon (6) werden mit Lithiumdiisopropylamid in 4/5-Position dilithiiert, anschließend seleniert (thioliert) und die resultierenden heterocyclischen Diselenolate (Dithiolate) in die Zink-bischelate (Tetrabutylammonium- bzw. Tetraphenylphosphoniumsalze) überführt.

Diese Zinkkomplexe reagieren mit Benzoylchlorid zu den jeweiligen Selenol- bzw. Thiolestern.

Interessanterweise erfahren die heterocyclischen Thione mit einem oder zwei Ringselenatomen (3,5) im Zuge der Lithiierungs-Chalkogenierungs-Sequenz eine Ringtransformation (Dimroth-Umlagerung), bei der ein Platzwechsel zwischen dem Thionschwefel und einem Ringselenatom erfolgt: $3 \rightarrow 1,3$ -Dithiol-2-selon-4,5-dithiolat- bzw. -diselenolat-Struktur, $5 \rightarrow 1,3$ -Thiaselenol-2-selon-4,5-diselenolat-Struktur. Die beobachtete Umlagerung wird durch unabhängige Synthesewege abgesichert. Das jeweils identische Zinkchelat 12 wird aus den Vorstufen 3 und 4, der Komplex 18 aus 5 und 6 erhalten. Abfangversuche legen den Schluß nahe, daß diese Umlagerung bereits bei der Lithiierung erfolgt.

Die Zinkchelate und Thiol- bzw. Selenolester werden strukturell eingehend durch IR- und vor allem ¹³C- und ⁷⁷Se-NMR-Spektren unter Einbeziehung von NMR-Daten der Ausgangsheterocyclen charakterisiert.

Die Röntgenkristallstrukturanalyse des aus 5 erhaltenen Bis(tetraphenylphosphonium)-bis(1,3-thiaselenol-2-selon-4,5-diselenolato)-zinkats (18) beweist die Umlagerung von 5 zur 1,3-Thiaselenol-2selon-Teilstruktur in 18.

Einleitung

Tetrathiafulvalene (TTF) und ihre Selenanaloga einerseits [1] sowie planare Übergangsmetalldithiolenkomplexe [2], speziell mit dem 1,3-Dithiol-2-thion-4,5-dithiolat-Liganden ($C_3S_5^{2-}$) andererseits [3,4], sind nach wie vor attraktive Grundstrukturen bei der Suche nach neuen elektrisch hoch- bzw. supraleitfähigen Verbindungen. Aktuelle Arbeiten verfolgen u.a. das Ziel, durch den Austausch von Alkylthiosubstituenten am TTF oder Tetraselenafulvalen (TSF) gegen Alkylseleno- oder Alkyltelluroreste [5–11] bzw. durch Übergang vom $C_3S_5^{2-}$ -Ion [12] zu analog strukturierten selenhaltigen Liganden wie dem $C_3Se_5^{2-}$ -Ion in entsprechenden Komplexen [13] die intermolekularen Wechselwirkungen zu verstärken, um dadurch die Dimensionalität der Elektronenleitung im Festkörper zu erhöhen.

Neue leistungsfähige Synthesen derartiger Verbindungen starten mit der Tetralithiierung von TTF oder TSF [5,6,8–11] bzw. der Dilithiierung z.B. von 1,3-Dithiol-2-thion [7] oder 4,5-Vinylendithio-1,3-dithiol-2-thion [14], gefolgt von verschiedenen Varianten einer Alkylchalkogenierung.

Das für die Koordinationschemie und als Synthesebaustein gleichermaßen interessante 1,3-Diselenol-2-selon-4,5-diselenolat-Ion $(C_3Se_5^{2-})$ wurde nach Vorarbeiten von Green und Engler [15] durch den Arbeitskreis um Hoyer [16] auf dem Weg der Elektroreduktion von Selenkohlenstoff (CSe₂) und von Matsubayashi *et al.* [13a] durch Reduktion von CSe₂ mit Natrium in Diglyme präparativ erschlossen. In Folge einer Diskussion über die falsche Zuordnung der ⁷⁷Se-NMR-Signale des daraus gewonnenen 4,5-Bis(benzoylseleno)-1,3-diselenol-2-selons [16b] haben die Autoren auf unsere Anregung hin [17] die Arbeiten von Nigrey [7] aufgegriffen und durch gezielte Synthesen u.a. ihr Zuordnungsproblem gelöst [18,19]. Zeitgleich hatten wir, anknüpfend an frühere Arbeiten [20], in eigenen Versuchen die am 1,3-Dithiol-2-thion aufgezeigte Möglichkeit der Dilithiierung mit dem Ziel, zu neuen selenanalogen Verbindungen aus dieser Reihe zu gelangen, auf 1,3-Diselenol-2-selon und 1,3-Thiaselenol-2-thion übertragen. In einer weiteren Arbeit haben Hoyer *et al.* [21] 1,3-Thiaselenol-2-thion der Reaktionssequenz Dilithiierung, Thiolierung, Komplexierung zum Zinkchelat und Benzoylierung unterzogen. Dabei blieb ihnen aber — abweichend von unseren Ergebnissen — verborgen, daß der Ausgangsheterocyclus während der Reaktion umgelagert wird und in den Produkten als 1,3-Dithiol-2-selon-Teilstruktur erscheint. Dies hat uns veranlaßt, die eigenen Experimente zum gleichen Gegenstand vorzeitig abzubrechen und die Ergebnisse, ungeachtet der soeben erschienenen Arbeit [22], hier mitzuteilen.

Nur der Vollständigkeit halber sei schließlich die Arbeit von Papavassiliou *et al.* [23] erwähnt, in der Chalkogenierungsversuche an einer Reihe von 5-Ring-S/Se-Heterocyclen notiert sind. Zumeist haben diese Autoren mit "alloys" bezeichnete Substanzgemische erhalten und in keinem Fall eine strukturelle Charakterisierung ihrer Verbindungen angegeben.

Wir haben folgende Heterocyclengrundkörper in unsere Chalkogenfunktionalisierungsreaktionen einbezogen: 1,3-Dithiol-2-thion (1), 1,3-Diselenol-2-selon (2), 1,3-Thiaselenol-2-thion (3), 1,3-Dithiol-2-selon (4), 1,3-Diselenol-2-thion (5) und 1,3-Thiaselenol-2-selon (6).

Die erhaltenen Verbindungen wurden eingehend kernresonanz- (¹³C, ⁷⁷Se) und IR-spektroskopisch untersucht (Tab. 1). Die NMR-Daten und deren strukturell bedingte Zusammenhänge sind in Fig. 1 dargestellt. Der aus 5 gewonnene Zinkkomplex 18 wurde durch eine Röntgenkristallstrukturanalyse charakterisiert.

Ergebnisse und Diskussion

1,3-Dithiol-2-thion (1) haben wir nach Nigrey durch Lithiumdiisopropylamid (LDA) in Tetrahydrofuran bei -78° C metalliert [7] und anschließend mit pulverförmigem grauem Selen umgesetzt; die Verwendung von rotem Selen [18a] ist nicht zwingend notwendig. Die Isolierung des so gebildeten 1,3-Dithiol-2-thion-4,5-diselenolats erfolgte nicht über den Nickelkomplex [7] sondern — orientiert an Lit. 12a — durch Komplexierung mit Zinkchlorid und Fällung als Tetrabutylammoniumsalz (s.a. [18], Schema 1). Hierzu engt man die Diselenolatlösung im Vakuum ein, nimmt den Rückstand in Methanol auf und versetzt mit Zinkchlorid. gelöst in Methanol/Ammoniak. Zur Abtrennung einer unlöslichen braunen Verunreinigung wird die Lösung unter Verwendung einer feinporigen Fritte filtriert. Durch diesen Reinigungsschritt erreicht man, daß die nach Zugabe von Tetrabutylammoniumbromid ausfallenden weinroten Kristalle des Bis(tetrabutylammonium)-bis(1,3-dithiol-2-thion-4,5-diselenolato)zinkats (7) analysenrein anfallen. Das 4,5-Bis(benzoylthio)-1,3-dithiol-2-thion eignet sich als leicht verseifbarer Thiolester zur einfachen in situ-Bereitung des 1,3-Dithiol-2-thion-4,5-dithiolats [12a,c]. Da dies im Falle entsprechender Selenolester ebenso zu erwarten ist, haben wir das Zinkchelat 7 mit Benzoylchlorid in das gelbe 4,5-Bis(benzoylseleno)-1,3-dithiol-2-thion (8) überführt.

Für die Struktur der Verbindungen 7 und 8 spricht die erwartete IR-Bande der C=S-Gruppe, die um 1050 cm⁻¹ gefunden wird [24].

Die ¹³C-NMR-Signale um 215 bzw. 130 ppm entsprechen der Thiocarbonylgruppe bzw. den C(4/5)-Atomen des Heterocyclus. Die ¹³C-Verschiebungen der Ring-C-Atome von 7 und 8 weichen nur wenig von den Signallagen des Grundkörpers 1 ab [25].

Das ⁷⁷Se-NMR-Spektrum des Zinkchelats 7 zeigt ein Signal bei hohem Feld, das nicht von Ringpositionen herrühren kann [26–28]. Das einzige ⁷⁷Se-Signal des Benzoats 8 liegt im Erwartungsbereich für Selenolester (ca. 600-650 ppm [28–30]) und ist gegenüber dem der Vorstufe 7 um den beträchtlichen Wert von 540 ppm zu tiefem Feld verschoben (s.a. [18a]).

1,3-Diselenol-2-selon (2) läßt sich nach der für 1 angegebenen Verfahrensweise in das dunkelpurpurfarbene, gut kristallisierende Bis(tetrabutylammonium)bis(1,3-diselenol-2-selon-4,5-diselenolato)-zinkat (9) umsetzen. Der Zinkkomplex reagiert seinerseits mit Benzoylchlorid glatt zum ebenfalls purpurfarbenen 4,5-Bis(benzoylseleno)-1,3-diselenol-2-selon (10) (Schema 2).

Unsere Synthese von 9 und 10 ist, gemessen an den erzielten Ausbeuten, die derzeit effektivste und liefert die Zielverbindungen in hoher Reinheit (vgl. [13a,16a,19], in Lit. 19 fällt 9 nur als Öl an). Gegenüber dem Weg der CSe₂-Reduktion [13a,16] hat unsere Methode weiterhin den prinzipiellen Vorzug, daß der schwierig darzustellende Selenkohlenstoff [31] besser ausgenutzt wird (pro $C_3Se_5^{2-1}$ -Ion durch CSe₂-Reduktion [12b,13a,16] theoretisch vier Äquivalente, zur Darstellung von 2 [20c] theoretisch nur ein Äquivalent CSe₂).

Die Umsetzung von dilithiiertem 2 mit Schwefel verläuft nicht einheitlich zum 1,3-Diselenol-2-selon-4,5-dithiolat-Ion, sondern es entsteht ein Produktgemisch, was anhand der Spektren des entsprechenden Zinkchelats sichtbar wird (C=Seneben C=S-Bande im IR-Spektrum, mehr als die erwartete Anzahl von ¹³C-Signalen).

Die Verbindungen 9 und 10 zeigen für C=Se-Gruppen typische [24] intensive IR-Banden um 900 cm⁻¹.

Die ¹³C-NMR-Spektren beider Substanzen weisen jeweils 2 Signale für den Heterocyclus aus, die C=Se-Absoption oberhalb 210 ppm, das C(4/5)Signal um 135 ppm [25]. In der Reihe $2 \rightarrow 9 \rightarrow 10$ tritt der bei $1 \rightarrow 7 \rightarrow 8$ zu verzeichnende geringe Tieffeldshift verstärkt in Erscheinung, während das C(4/5)-Signal von 9 gegenüber 2 bei deutlich höherem Feld erscheint.

Das ⁷⁷Se-NRM-Spektrum von 9 und 10 besteht aus den erwarteten drei Linien. Der Spektrenhabitus stimmt mit Literaturangaben für 9 [13a] und 10 [16b] überein, für 9 sind die numerischen Angaben jedoch unvollständig. Den das Zinkion koordinierenden Se-Atomen in 9 ordnen wir wieder das Signal bei hohem Feld zu. Die Benzoylierung von 9 zu 10 geht — wie bei $7 \rightarrow 8$ — mit einer beträchtlichen Entschirmung der Se-Atome in 4/5-Position einher (563 ppm). Die ⁷⁷Se-Reso-

Tabelle 1

IR-Absorption der C=X-Gruppen (cm⁻¹), ¹³C- und ⁷⁷Se-NMR-chemische Verschiebungen (ppm) der Zinkchelate 7, 9, 11, 12, 17 (DMSO-d₆), Benzoate 8, 10, 13, 19 (CDCl₃) und NMR-Vergleichsdaten von 1, 2, 4, 6 (CDCl₃)

Verb.	R	¹³ C			™Se				Sonstige	13C d			
	(Zuordnung)	C(2)	C(4)	C(5)	C=Se	Se(1/3)	4-Se	5-Se	0_0_0	C(1')	C(2')	C(3')	C(4')
1 a		213.30	129.40	129.40		-							
2 a,b		207.70	139.50	139.50	1222.9	1040.7							
4 a,b		203.70	134.40	134.40	908.3								
6 ^{b,c}		206.00	137.70	135.60	1056.7	1024.5							
7	1034; 1054	214.78	128.23	128.23			92.6	92.6		57.68	23.20	19.35	13.36
	(C=S)												
90	1054 (C=S)	216.27	129.99	129.99			632.8	632.8	188.66	136.74	127.73	129.30	134.92
6	900 (C=Se)	212.80	133.81	133.81	1070.1	1135.5	105.0	105.0		57.69	23.23	19.38	13.67
10	902 (C=Se)	215.60	134.70	134.70	1259.8	1120.7	667.6	667.6	189.51	136.88	127.76	129.31	134.88
11	944 (C=Se)	193.81	141.31	141.31	731.0					57.76	23.18	19.30	13.51
12	940 (C=Se)	202.60	134.22	134.22	756.7		98.3	98.3		57.66	23.20	19.34	13.61
13	946 (C=Se)	207.98	134.06	134.06	983.1		630.9	630.9	188.36	136.67	127.77	129.34	134.99
17 و	928 (C=Se)	207.65	134.71	133.15	902.8	1102.5	117.2	94.7		57.65	23.12	19.23	13.46
19	934 (C=Se)	212.69	139.75	126.65	1090.7	1121.8	702.0	621.8	190.12	136.82	127.90	129.35	135.06
									188.01	136.60	127.65		134.96
^a ¹³ C-We	srte [25]. ^b Um 2	nz mdd 6	tiefem Feld	l korrigierte	5 77 Se-Wert	e [27,35]. ^{c 1}	³ C-Werte	[27]. ^d C(1	(,)-C(4') b	edeuten für	7, 9, 11, 1	[2, 17; C(1)	bis C(4) des
Bu₄N ⁺ -I	ons (Zuordnung)	nach [36]), i	für 8, 10, 1.	3, 19: C(1)	bis C(4) des	h-Restes (Zuordnun	g nach [30]). ^c Signale	des Ph.P.	⁺ -Ions in 18	3 (in ppm):	117.67 (C(1').
¹ <i>J</i> (C,P) 8	9.6 Hz), 134.49 (C	2(2'), ² J(C,J	P) 10.3 Hz),	, 130.40 (CC	3'), ³ J(C,P)	12.7 Hz), 135	5.27 (C(4')	(Zuordnu	ing nach [3'	- - -			

217

Fig. 1. ⁷⁷Se- und ¹³C-NMR-chemische Verschiebungen der untersuchten Verbindungen.

nanzen von C=Se-Gruppen und Ringselenatomen in 1,3-Diselenol-2-selonen liegen in sich überlappenden Verschiebungsbereichen (ca. 900-1250 ppm, [27]). Als Zuordnungskriterium diente unsere frühere Beobachtung, daß in derartigen Heterocyclen die C=Se-Signale eine wesentlich größere Linienbreite haben als Signale von Ring-Se-Atomen und sich daher in geringeren Signalhöhen zu erkennen geben [27]. Demnach entspricht das jeweilige Signal bei tiefstem Feld für Verbindung 9 den Ringselenatomen und für 10 der C=Se-Gruppe. Es tritt also durch den starken Hochfeldshift der C=Se-Resonanz (153 ppm) und der gleichzeitigen Entschirmung des Ringselens (95 ppm) beim Übergang vom Grundkörper 2 zum Zinkchelat 9 ein Wechsel der Signalsequenz ein. Der Schritt von 9 zum Benzoat 10 bewirkt die entgegengesetzten Verschiebungseffekte (C=Se 190, Ring-Se 15 ppm) und stellt die ursprüngliche Sequenz wieder her. Gegenüber 2 sind beide Signale von 10 tieffeldverschoben (C=Se 37, Ring-Se 80 ppm) (zum Problem der Zuordnung für **10** ygl. [16b,18a,19]).

1,3-Thiaselenol-2-thion (3) haben wir, wie für 1 beschrieben, nach Dilithiierung mit Schwefel bzw. Selen umgesetzt. Anschließend erfolgte Komplexierung mit

Schema 2.

Schema 3.

Zinkchlorid und Fällung als Tetrabutylammoniumsalz (Schema 3). Das Produkt der Thiolierung (11) ist tiefviolett gefärbt, das der Selenierung (12) purpurfarben. Im Falle des Komplexes 11 war hier zusätzliche Umkristallisation erforderlich.

Die IR-Spektren beider Komplexe und des aus 12 gewonnenen Benzoats 13 ergaben den unerwarteten Befund, daß keine C=S-Bande bei ca. 1050 cm⁻¹ auftrat, dafür aber eine intensive Absorption um 950 cm⁻¹, die einer C=Se-Gruppe zuzuordnen ist (vgl. mit 9, 10; [24]).

Die ¹³C-NMR-Spektren beider Komplexe und der Verbindung 13 zeigen nicht drei Signale, wie es für einen 1,3-Thiaselenol-Ring zu erwarten ist [25,27], sondern nur zwei Linien für den Heterocyclus. Das jeweilige Tieffeldsignal von 11-13 interpretieren wir als C=Se- und nicht als C=S-Absorption: letztere sollte bei größerer chemischer Verschiebung erscheinen [25]. Das ¹³C-NMR-Spektrum des Chelats 11 steht hinsichtlich Anzahl und Lage der Signale mit der Struktur Bis(tetrabutylammonium)-bis(1,3-dithiol-2-selon-4,5-dithiolato)-zinkat in Einklang (s.a. [22]) und nicht, wie in Lit. 21 angegeben, mit der 1,3-Thiaselenol-2-thion-4.5dithiolat-Struktur. Verglichen mit den ¹³C-Verschiebungen des $[(C_3S_5)_2Zn]^{2-1}$ -Ions (206.7. 135.0 ppm [21]) erfüllt 11 annähernd die Inkremente für den Wechsel vom Thion zum Selon bei derartigen 1,3-Dithiolen [25]; C=Se-Signal ca. 10 ppm zu hohem, C(4/5)-Signal ca. 5 ppm zu tiefem Feld. Dieselben Verschiebungseffekte sind beim Vergleich der Zinkchelate 12 und 7 zu verzeichnen. 12 schreiben wir die Struktur Bis(tetrabutylammonium)-bis(1,3-dithiol-2-selon-4,5-diselenolato)-zinkat zu. Die gleichen Verschiebungsänderungen erfolgen beim Wechsel vom Thion 8 zum Benzoat 13, dem wir entsprechend 12 die Struktur 4,5-Bis(benzoylseleno)-1,3-dithiol-2-selon zuordnen. Die Situation ist der bei den Dithiolthionen 1, 7, 8 und Diselenolselonen 2, 9, 10 sehr ähnlich. Bemerkenswert ist auch hier, wie bei $1 \rightarrow [(C_2S_5)_2Zn]^{2-}$, das "Zusammenlaufen" der ¹³C-Verschiebungen beim Übergang vom Grundheterocyclus 4 zum Dithiolatkomplex 11.

Die ¹³C-NMR-spektroskopische Strukturzuordnung für 11–13 wird durch deren ⁷⁷Se-NMR-Spektren untermauert. So beobachten wir für 11 ein Signal, für 12 und 13 zwei Signale. Die C=Se-Resonanzen liegen für 11 und 12 bei 731.0 bzw. 756.7

ppm. Diese Zuordnung ergibt sich zwanglos aus dem bekannten Inkrement, das für den Übergang eines 1,3-Diselenol-2-selons zum entsprechenden 1,3-Dithiol-2selon eine Hochfeldverschiebung des C=Se-Signals von 315 ppm erwarten läßt [27]. Dieser Verschiebungseffekt wird beim Vergleich des Komplexes 9 mit Verbindung 12 recht gut reproduziert und schließt damit ebenfalls eine Thiaselenol-Struktur in 12 aus. Bezogen auf den Grundkörper 4 ist der Übergang zum Komplex 12—wie bei $2 \rightarrow 9$ — mit einer Hochfeldverschiebung der C=Se-Absorption verbunden, um beim Schritt zum Benzoat 13 wieder um 226 ppm zu tiefem Feld zu wandern. Ein gutes Argument für die Struktur 12 ist ferner das Auftreten nur eines Signals bei hohem Feld. Im Falle eines 1,3-Thiaselenol-2-thion-4,5-diselenolat-Liganden müßten dagegen für den entsprechenden Zinkkomplex zwei ⁷⁷Se-Resonanzen bei *ca*. 100 ppm zu beobachten sein. Die Benzoylierung von 12 zum Selenolester 13 ist für die Absorption der Se-Atome in 4/5-Position wieder mit einer drastischen Tieffeldverschiebung von *ca*. 533 ppm verbunden.

Die spektroskopische Strukturzuordnung für 11-13 haben wir auf präparativem Wege durch eine unabhängige Synthese des Zinkchelats 12 abgesichert. Als Ausgangsverbindung diente 1,3-Dithiol-2-selon (4), also der Heterocyclus, der als Teilstruktur in den Produkten 11-13 erscheint.

1,3-Dithiol-2-selon (4) wurde, wie für 1 detailliert beschrieben, lithiiert, seleniert, das Zwischenprodukt an Zinkionen gebunden und der Komplex schließlich als Tetrabutylammoniumsalz isoliert (Schema 3).

Das IR- und ¹³C-NMR-Spektrum des so gewonnenen Zinkchelats stimmen exakt mit denen des Komplexes 12, der aus 3 erhalten wurde, überein, d.h. die beiden Reaktionswege führen zum identischen Produkt 12. Es kann somit als bewiesen gelten, daß im Zuge der untersuchten Reaktionsfolge 1,3-Thiaselenol-2thion zum 1,3-Dithiol-2-selon-Ring umgelagert wird. Damit sind die Angaben in Lit. 21 zu korrigieren (vgl. auch [22]).

Zur Klärung der Frage, ob die Umlagerung von 3 bereits bei der Metallierung erfolgt oder erst im Zuge der Chalkogenierung, haben wir versucht, die Dilithiunverbindung unter Umgehung weiterer anionischer Intermediate in ein stabiles Produkt zu überführen. Von den in Frage kommenden Möglichkeiten haben wir ein Alkylselenocyanat als Abfangreagens gewählt, das mit einem Carbanion unter Alkylselenierung reagieren sollte. Konkret wurde 1,2-Ethylendiselenocyanat eingesetzt und die Umsetzung zunächst mit dem Thion 1 durchgeführt. Dilithiiertes 1 reagiert mit dem difunktionellen Reagens wie erwartet unter Ringschluß zum 4,5-Ethylendiseleno-1,3-dithiol-2-thion (14) (Schema 4). Die aufgespaltene C=S-Bande im IR-Spektrum bei 1040, 1058 cm⁻¹ und der massenspektrometrisch registrierte Molpeak bei der Massenzahl (MZ) 320 (bezogen auf ⁸⁰Se) mit einem Isotopenmuster für zwei Se-Atome bestätigen die Reaktion zu 14. Die Dilithiierung von 1,3-Thiaselenol-2-thion (3) und anschließende Umsetzung mit Ethylendiselenocyanat führt zum 4,5-Ethylendiseleno-1,3-dithiol-2-selon (15). Für die Struktur von 15 spricht die C=Se-Bande im IR-Spektrum bei 948 cm⁻¹—eine C=S-Absorption fehlt völlig-und das Massenspektrum, das den Molpeak bei der MZ 368 (bezogen auf ⁸⁰Se) mit dem Isotopenmuster für drei Se-Atome liefert. Daß 14 und 15 die gleiche Ringheteroatombesetzung aufweisen, beweist deren Reaktion mit Quecksilber(II)-acetat zum 4,5-Ethylendiseleno-1,3-dithiol-2-on (16). Dem IR- und Massenspektrum zufolge sind beide Produkte identisch. Die IR-Absorption der C=O-Gruppe erscheint bei 1644 cm⁻¹ und für den Molpeak wurde

Schema 4.

die MZ 304 (bezogen auf ⁸⁰Se) mit einem Isotopenmuster für zwei Se-Atome gemessen.

Die Reaktion $3 \rightarrow 15$ hat wegen der unerwartet geringen Ausbeute * an Ringschlußprodukt 15 keine überzeugende Beweiskraft, kann aber als Indiz dafür angesehen werden, daß die beobachtete Ringtransformation (Dimroth-Umlagerung) lediglich durch die Wirkung von LDA induziert wird. Diese Vorstellung stimmt mit Angaben von Lakshmikantham und Cava [32] überein, die eine Isomerisierung von $3 \rightarrow 4$, allerdings im protischen Medium t-Butanol/Dimethylformamid, durch Einwirkung von Kalium-t-butylat beobachtet haben. Diese Autoren diskutieren das S-Ethinyldithioselenocarbonat-Ion als acyclisches Intermediat, das zum Selon 4 recyclisiert.

Als entscheidende Triebkraft dieser Umlagerung sehen wir die größere thermodynamische Stabilität des schwefelreicheren Ringsystems in Folge der besseren konjugativen Elektronendelokalisation durch die Ringschwefelatome in diesen cyclischen 6π -Elektronensystemen [33] an (vgl. hierzu die Argumente aus NMR-Untersuchungen [25,27,34]).

Bei Gültigkeit dieser Aussage war zu erwarten, daß unter den gewählten experimentellen Bedingungen auch das 1,3-Diselenol-2-thion (5) einer derartigen Umlagerung unterliegt und nach Metallierung und Selenierung das 1,3-Thiaselenol-2-selon-4,5-diselenolat-Ion ergibt.

1,3-Diselenol-2-thion (5) konnten wir nach der für die Heterocyclen 1-4 angewandten Reaktionsfolge tatsächlich zu dem tiefpurpurfarbenen Bis(tetrabutylammonium)-bis(1,3-thiaselenol-2-selon-4,5-diselenolato)-zinkat (17) umsetzen (Schema 5). Die geringere Ausbeute geht einher mit einer größeren Menge an Verunreinigungen und schlechter Kristallisationsneigung. Daher war hier Reinigung durch Umkristallisation geboten. Den besser kristallisierenden schwererlöslichen Zinkkomplex 18 erhielten wir durch Fällung des komplexen Anions mit Tetraphenylphosphoniumbromid. Die Reaktion dieses ebenfalls purpurfarbenen Chelats 18 mit Benzoylchlorid gibt das 4,5-Bis(benzoylseleno)-1,3-thiaselenol-2selon (19).

Die Verbindungen 17–19 zeigen IR-Absorptionen für C=Se-Gruppen um 930 cm^{-1} aber keine C=S-Banden.

^{*} Bessere Abfangreagentien könnten z.B. sein: MeSeCN, Me2Se2, Me3SiCl, Me3SnCl.

Die ¹³C-NMR-Spektren dieser Produkte weisen entsprechend dem unsymmetrischen Heterocyclus jeweils drei Signale für die Ring-C-Atome aus. Die Komplexe 17 und 18 geben für das Anion die gleichen ¹³C-Verschiebungswerte. Die Lage der Signale bei tiefem Feld entspricht C=Se-Absorptionen, die sich wie erwartet [25,27] zwischen denen der entsprechenden Dithiolselone und Diselenolselone einordnen. In Analogie zum Grundkörper 6 [27] haben wir für die C(4/5)-Atome von 17–19 das Signal bei tieferem Feld dem C(4) (selenbenachbart), das bei höherem Feld dem C(5) (schwefelbenachbart) zugeordnet. Wie in der Reihe der Diselenole 2, 9, 10 beobachtet man für das C(4)-Atom der Thiaselenole 6, 17, 19 den gleichen Gang der ¹³C-Verschiebung. Demgegenüber erfährt das C(5)-Signal des Benzoats 19 bezogen auf 17 einen deutlichen Hochfeldshift, was zu der bemerkenswert großen Verschiebungsdifferenz zwischen C(4) und C(5) in 19 Anlaß gibt. Die unsymmetrische Ringstruktur in 19 drückt sich ferner in der Aufspaltung aller Signale des Benzoylrestes — mit Ausnahme für C(3') — aus.

Die Verbindungen 17 und 19 liefern jeweils vier ⁷⁷Se-NMR-Signale und damit doppelt so viele, wie eine 1,3-Diselenol-2-thion-4,5-diselenolat-Struktur ergehen müßte. Der Zinkkomplex 17 besitzt entsprechend den Signalen bei 94.7 und 117.2 ppm zwei unterschiedliche an Zink gebundene Selenatome. Das Ring-Se-Signal erscheint gegenüber der C=Se-Resonanz bei tieferem Feld. Verglichen mit dem Grundkörper 6 ist die Signalsequenz, wie bei $2 \rightarrow 9$, wiederum vertauscht. Der Schritt $6 \rightarrow 17$ verschiebt die C=Se-Absorption, wie im Falle $4 \rightarrow 12$ und $2 \rightarrow 9$, um ca. 150 ppm zu hohem Feld, während das Ringselen um 78 ppm entschirmt wird. Der Übergang von 17 zum Benzoat 19 führt auch hier zu der starken Entschirmung der an C(4) und C(5) gebundenen Se-Atome. In Analogie zur Zuordnung der ¹³C-Signale von 17–19 nehmen wir an, daß die ⁷⁷Se-Resonanz des 4-Se-Atoms jeweils bei tieferem Feld als die des 5-Se-Atoms erscheint. Bemerkenswert groß ist die Verschiebungsdifferenz der Linien für diese Se-Positionen im Benzoat 19. Die Zuordnung des Signals bei 1090.7 ppm zur C=Se-Gruppe und bei 1121.8 ppm zum Ringselen von 19 basiert auch hier auf den deutlich unterschiedlichen Linienbreiten. Mit dem Schritt $17 \rightarrow 19$ wandert das C=Sc-Signal um 188 ppm und auch die Ringselenabsorption um 19 ppm zu tiefem Feld. Ein Rücktausch der Signalsequenz wie bei $9 \rightarrow 10$ bleibt hier jedoch aus.

Fig. 2. Molekülstruktur des Anions von 18 mit der in Tab. 2 und 3 benutzten Atomnummerierung.

1,3-Thiaselenol-2-selon (6) diente als Startverbindung für einen unabhängigen Syntheseweg zum Komplex 18. Nach Lithiierung, Selenierung, Umsetzung mit Zinkionen und Fällung des Komplexes als Tetraphenylphosphoniumsalz wird Verbindung 6 problemlos in das Zinkchelat 18 überführt (Schema 5). Die völlig gleichen IR- und ¹³C-NMR-Spektren des aus 6 und 5 synthetisierten Komplexes 18 beweisen die Identität beider Proben und sichern damit die angegebene Thiaselenol-Struktur von 17-19.

Röntgenkristallstrukturanalyse des Komplexes 18

Figur 2 zeigt die ermittelte Struktur und Tab. 2 gibt die Strukturparameter des komplexen Anions von 18 wieder. Die leicht verzerrt-tetraedrische Koordination

Ausgewählte Bindungslängen (Å) und Bindungswinkel (°) mit Standardabweichungen von 18					
Zn-Se(1)	2.458(4)	S(2)-C(3)	1.826(16)	-	
Zn-Se(2)	2.440(3)	S(2)-C(6)	1.788(22)		
Zn-Se(3)	2.457(3)	Se(5)-C(1)	1.847(20)		
Zn-Se(4)	2.437(3)	Se(5)-C(5)	1.820(19)		
Se(1)-C(1)	1.873(16)	Se(6)C(4)	1.852(20)		
Se(2)-C(2)	1.894(21)	Se(6)-C(6)	1.816(16)		
Se(3) - C(3)	1.880(19)	Se(7)-C(5)	1.789(21)		
Se(4) - C(4)	1.879(16)	Se(8)C(6)	1.799(20)		
S(1)-C(2)	1.803(17)	C(1)-C(2)	1.367(25)		
S(1)-C(5)	1.775(23)	C(3)-C(4)	1.389(21)		
Se(1)-Zn-Se(2)	97.0(1)	S(1)-C(2)-C(1)	117.9(1.5)		
Se(3)-Zn-Se(4)	96.8(1)	C(2)-C(1)-Se(5)	115.2(1.3)		
Se(1)-Zn-Se(3)	115.8(1)	C(1)-Se(5)-C(5)	96.3(9)		
Se(2)-Zn-Se(4)	117.4(1)	Se(5)-C(5)-S(1)	113.0(1.1)		
Zn-Se(1)-C(1)	93.7(6)	C(5)-S(1)-C(2)	97.6(9)		
Zn-Se(2)-C(2)	94.0(5)	Se(5)-C(5)-Se(7)	127.5(1.3)		
Zn-Se(3)-C(3)	93.2(4)	S(2)-C(3)-C(4)	116.5(1.4)		
Zn-Se(4)-C(4)	94.5(6)	C(3) - C(4) - Se(6)	117.0(1.3)		
Se(1)-C(1)-C(2)	128.2(1.5)	C(4) - Se(6) - C(6)	94.7(8)		
Se(2)-C(2)-C(1)	127.0(1.3)	Se(6)-C(6)-S(2)	115.4(1.1)		
Se(3)-C(3)-C(4)	128.2(1.3)	C(6)-S(2)-C(3)	96.4(8)		
Se(4)-C(4)-C(3)	126.1(1.5)	Se(6)-C(6)-Se(8)	124.6(1.2)		

Tabelle 2

224

der vier Se-Atome um das Zinkion entspricht weitgehend der Situation im $[Ph_4P]_2[Zn(C_3Se_5)_2]$ [13a]. Die Se-Zn-Se-Winkel innerhalb der Chelatringe [Se(1)-Zn-Se(2), Se(3)-Zn-Se(4)] sind kleiner (96.9°), die zwischen den Liganden [Se(1)-Zn-Se(3), Se(2)-Zn-Se(4)] (116.6°) größer als der Tetraederwinkel. Die Zn-Se-Abstände, gemittelt 2.448 Å, stimmen gut überein mit Angaben für das $[Zn(C_3Se_5)_2]^{2-}$ -Ion (2.443 Å [13a]). Der durchschnittliche C-Se-Abstand (zu Se(1)-Se(4)) liegt mit 1.882 Å innerhalb der wenig differierenden Werte für bisher untersuchte Diselenolenkomplexe (1.865–1.900 Å [13a,b,7c]). Vergleichsdaten für die C=C-Bindungslänge in Dithiolen- und Diselenolenkomplexen mit analog strukturierten Liganden betragen 1.210–1.357 Å [7c,12a,13a,b,38,39]. Werte für C-S- und C-Se-Bindungen im Heterocyclus derartiger Referenzstrukturen sind 1.718–1.757 Å [7c,11,12a,13c,38–40] bzw. 1.810–1.950 Å [13a,b,41,42]. Die C=Se-Gruppe in **18** ist annähernd gleichlang wie in vergleichbaren Selenocarbonyl-Strukturen (1.801–1.890 Å [13a,b,41]) und signifikant länger als C=S-Gruppen in analogen Verbindungen (1.624–1.669 Å [7c,12a,13c,38–40]).

Die Strukturanalyse von 18 insgesamt beweist die Umlagerung von 5 zur 1,3-Thiaselenol-2-selon-Teilstruktur bei der Synthese dieses Komplexes. Des weiteren wird auf diesem Wege die oben diskutierte Zuordnung und Interpretation der NMR-Daten bestätigt.

Experimentelles

Die IR-Spektren wurden mit einem IR-Specord M 80-Spektrometer, Carl Zeiss Jena, registriert. Die Aufnahme der NMR-Spektren erfolgte mit einem Bruker MSL-400-Spektrometer bei 100.63 MHz (¹³C) bzw. 76.343 MHz (⁷⁷Se). Die ¹³C-chemischen Verschiebungen sind auf das mittlere Lösungsmittelsignal von CDCl₃ (77.00 ppm) bzw. DMSO-d₆ (37.60 ppm) bezogen. Die Eichung für die ⁷⁷Se-Messungen erfolgte mit einem externen H₂SeO₃-Standard. Das Signal einer gesättigten Lösungsmittel (CDCl₃ bzw. DMSO-d₆) wurde mit einer chemischen Verschiebung von 1311.0 ppm [35] gegen Me₂Se definiert. Zur Messung der Massenspektren diente ein Finnigan MAT 212-Spektrometer.

Die Ausgangsheterocyclen wurden nach literaturbekannten Vorschriften dargestellt: 1 [43], 2 [20c], 3, 6 [32], 4 in Anlehnung an [32] aus 2-Morpholino-1,3dithiolium-tetrafluoroborat und Selenwasserstoff bei 0°C in Methanol und 5 [44].

Alle neu-synthetisierten Verbindungen lieferten befriedigende Elementaranalysen.

Synthese der Zinkchelate 7, 9, 11, 12, 17 und 18; allgemeine Arbeitsvorschrift

In einem 100 ml 3-Halskolben mit Magnetrührer werden unter Argon 40 ml abs. THF und 0.80 g (8 mmol) frisch über KOH destilliertes Diisopropylamin vorgelegt und auf -78° C gekühlt. Durch ein Gummiseptum wird mittels Injektionsspritze unter Rühren Butyllithium (5.00 ml 1.6 *M* Lösung in Pentan, 8 mmol) zugetropft und 40 min bei dieser Temperatur gerührt. Danach erfolgt Zugabe des jeweiligen Heterocyclus 1-6 (4 mmol) in fester Form, und es wird 2 h bei -78° C gerührt. Anschließend versetzt man mit 0.632 g (8 mmol) pulverförmigem grauem Selen bzw. 0.257 g (8 mmol) Schwefel, rührt 1 h bei -78° C und nach Entfernung des Kühlbades 2 h (Selenierung) bzw. 18 h (Thiolierung) bei Raumtemperatur. Danach zieht man das THF am Rotationsverdampfer weitestgehend ab, löst das verbleibende zähe Öl in 20 ml Methanol und tropft im Verlauf von 15 min unter Rühren und Argon eine Lösung von 0.273 g (2 mmol) Zinkchlorid in 4 ml Methanol/4 ml Ammoniak ein und rührt 30 min nach. Die Mischung wird nun über eine feinporige Fritte abgesaugt, der feste Rückstand mit 2×5 ml Methanol gewaschen und zum Filtrat bei 0°C unter Rühren eine Lösung von 1.29 g (4 mmol) Tetrabutylammoniumbromid bzw. 1.68 g (4 mmol) Tetraphenylphosphoniumbromid in 5 ml Methanol zugetropft. Nach 30 min saugt man die Kristalle ab, wäscht mit 2×5 ml Methanol und 2×15 ml Ether und trocknet im Vakuum über P₄O₁₀.

Bis(tetrabutylammonium)-bis(1,3-dithiol-2-thion-4,5-diselenolato)-zinkat (7). Ausb. 1.32 g (58%), Schmp. 163.5–165°C.

Bis(tetrabutylammonium)-bis(1,3-diselenol-2-selon-4,5-diselenolato)-zinkat (9). Ausb. 2.36 g (84%), Schmp. 158–159.5°C (Zers.).

Bis(tetrabutylammonium)-bis(1,3-dithiol-2-selon-4,5-dithiolato)-zinkat (11). Ausb. 0.66 g (32%), Schmp. 162–168°C (Zers.).

Bis(tetrabutylammonium)-bis(1,3-dithiol-2-selon-4,5-diselenolato)-zinkat (12). Aus 3: Ausb. 1.79 g (73%), Schmp. 175–178°C (Zers.). Aus 4: Ausb. 1.65 g (66%), Schmp. 183–187°C (Zers.).

Bis(tetrabutylammonium)-bis(1,3-thiaselenol-2-selon-4,5-diselenolato)-zinkat (17). Ausb. 0.30 g (11%) nach Umkristallisation aus Aceton/i-Propanol, Schmp. 171– 175°C (Zers.).

Bis(tetraphenylphosphonium)-bis(1,3-thiaselenol-2-selon-4,5-diselenolato)-zinkat (18). Aus 5: Ausb. 0.61 g (20%) nach Umkristallisation aus Aceton/i-Propanol, Schmp. 218°C (Zers.). Aus 6: Ausb. 1.42 g (47%) nach Umkristallisation aus Aceton/i-Propanol, Schmp. 209-211°C (Zers.).

Darstellung der Benzoate 8, 10, 13 und 19; allgemeine Arbeitsvorschrift

Zu einer gerührten Lösung des Zinkkomplexes 7, 9, 12 in 20 ml bzw. 18 in 150 ml Aceton tropft man 0.56 g (4 mmol) Benzoylchlorid, gelöst in 5 ml Aceton, rührt 15 min nach und engt anschließend zur Trockne ein. Der Rückstand wird mit siedendem Tetrachlormethan ausgezogen und die Lösung filtriert, aus der das Produkt auskristallisiert.

4,5-Bis(benzoylseleno)-1,3-dithiol-2-thion (8). Ausb. 0.47 g (47%), Schmp. 145°C. 4,5-Bis(benzoylseleno)-1,3-diselenol-2-selon (10). Ausb. 0.90 g (70%), Schmp. 147°C.

4,5-Bis(benzoylseleno)-1,3-dithiol-2-selon (13). Ausb. 0.67 g (61%), Schmp. 144°C.

4,5-Bis(benzoylseleno)-1,3-thiaselenol-2-selon (19). Ausb. 1.02 g (86%), Schmp. 145°C.

4,5-Ethylendiseleno-1,3-dithiol-2-thion (14) und -selon (15)

0.537 g (4 mmol) 1 bzw. 0.725 g (4 mmol) 3 werden in der zur Darstellung der Zinkchelate angegebenen Weise dilithiiert und anschließend bei -78° C unter Rühren tropfenweise mit einer Lösung von 0.952 g (4 mmol) Ethylendiselenocyanat in 10 ml THF versetzt. Man rührt 1 h bei -78° C und anschließend 2 h bei Raumtemperatur. Nach Zugabe von 100 ml Wasser wird mit 4 × 50 ml Chloroform extrahiert, der Extrakt mit 30 ml verd. Salzsäure, 30 ml Natriumhydrogencarbonatlösung sowie 30 ml Wasser gewaschen und über Natriumsulfat getrocknet. Schließlich wird das Lösungsmittel im Vakuum abgezogen.

Ausb. 14: 0.40 g (31%), Schmp. 162–163°C (Trichlorethylen). IR: 1040, 1058 cm⁻¹ (C=S). MS: m/z (bezogen auf ⁸⁰Se): 320 (M^+), 292 ($M^+ - C_2H_4$), 216 ($M^+ - C_2H_4 - CS_2$).

Ausb. 15: 0.10 g (7%), Schmp. 166°C (Zers.). IR: 948 cm⁻¹ (C=Se). MS: m/z (bezogen auf ⁸⁰Se): 368 (M^{+}), 340 (M^{+} - C₂H₄), 216 (M^{+} - C₂H₄ - CSSe).

4,5-Ethylendiseleno-1,3-dithiol-2-on (16)

0.159 g (0.5 mmol) 14 bzw. 0.183 g (0.5 mmol) 15 und 0.175 g (0.55 mmol)Quecksilber(II)-acetat werden in einer Mischung aus 10 ml Chloroform und 10 ml Eisessig 2 h unter Rückfluß erhitzt. Anschließend engt man zur Trockne ein, extrahiert das Produkt mit 100 ml Chloroform aus dem Rückstand heraus, filtriert und wäscht den Auszug mit 30 ml Natriumhydrogencarbonatlösung sowie 30 ml Wasser und trocknet über Natriumsulfat. Danach engt man auf *ca*. 20 ml ein und chromatographiert über eine 5 cm hohe Kieselgelschicht mit Benzol als Laufmittel. Nach Abziehen des Lösungsmittels im Vakuum wird aus Methanol umkristallisiert.

Ausb. aus 14: 0.067 g (44%), Schmp. 105–106°C.

Ausb. aus 15: 0.045 g (30%), Schmp. 106–107.5°C. IR: 1644 cm⁻¹ (C=O). MS: m/z (bezogen auf ⁸⁰Se): 304 (M^+), 276 (M^+ – 28), 248 (M^+ – 28 – 28) (ob zuerst CO und dann C₂H₄ abgespalten wird, müßte durch Hochauflösung ermittelt werden), 136 (C₂SSe⁺; wahrscheinlich das Ethylen-1-thion-2-selon-Bruchstück, vgl. [45], 124 (CSSe⁺), 88 (C₂S₂⁺).

Einkristalle von 18

Zu einer heiß gesättigten Lösung von 18 (hergestellt aus 5) in Aceton gibt man bis zur beginnenden Trübung i-Propanol, erhitzt erneut zum Sieden und läßt unter Lichtausschluß kristallisieren.

Röntgenkristallstrukturanalyse von 18 *

Intensitätsmessungen wurden an einem STOE-Diffraktometer unter Verwendung von Mo- K_{α} -Strahlung in Kombination mit einem Graphit-Monochromator durchgeführt. Der Meßbereich war 4° < 2 θ < 45°. Von 7150 Reflexen wurden 5125 mit $I > 2\sigma I$ als beobachtet eingestuft. Für die Strukturbestimmung wurden die Startkoordinaten für Zn, Se, S und P durch direkte Methoden (sHELXS [46]) ermittelt. Weitere Rechnungen erfolgten mit dem XTAL-System [47]. Eine empirische Absorptionskorrektur wurde mit dem DIFABS-Programm [48] vorgenommen. Die Ortskoordinaten gibt Tab. 3 wieder. Kristallographische Angaben für 18, $C_{54}H_{40}P_2S_2Se_8Zn$ (1512.05 g/mol): Kristallsystem triklin, Raumgruppe $P\overline{1}$, Nr. 2 der International Tables [49], a 12.238(2), b 14.874(2), c 16.449(2) Å, α 112.85(0.01), β 93.90(0.01), γ 95.03(0.01)°, V 2731.5 Å³, Z = 2.

^{*} Weitere Informationen zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter der Hinterlegungsnummer CSD-55796, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Atom	x	у	Z
S(1)	0.4242(3)	0.2712(3)	0.6623(2)
S(2)	0.2451(3)	0.9411(2)	0.8525(2)
Se(5)	0.2640(2)	0.2759(2)	0.7935(2)
Se(6)	0.0544(2)	0.8466(2)	0.7057(2)
Zn	0.2572(2)	0.5808(1)	0.7343(1)
Se(1)	0.1862(2)	0.4794(1)	0.8113(1)
Se(2)	0.3816(2)	0.4693(1)	0.6494(1)
Se(3)	0.3447(2)	0.7473(1)	0.8302(1)
Se(4)	0.1188(2)	0.6300(1)	0.6514(1)
Se(7)	0.4154(2)	0.0990(2)	0.7223(2)
Se(8)	0.0896(2)	0.0795(2)	0.8172(2)
P(1)	0.2406(4)	0.2597(3)	0.1277(3)
P(2)	0.2014(4)	0.8070(3)	0.3952(3)
C(1)	0.274(1)	0.380(1)	0.759(1)
C(2)	0.348(1)	0.376(1)	0.699(1)
C(3)	0.234(1)	0.808(1)	0.793(1)
(4)	0.150(1)	0.765(1)	0.724(1)
α	0.368(2)	0.705(1)	0.727(1)
α	0.127(2)	0.958(1)	0.727(1)
C(0)	0.127(2)	0.131(1)	0.107(1)
C(112)	0.158(1)	0.063(2)	0.086(1)
C(112)	0.156(2)	-0.034(1)	0.050(1)
O(113)	0.100(2)	-0.054(1)	0.074(1)
C(115)	0.270(2)	-0.001(1)	0.079(1)
C(115)	0.353(2)	0.000(2)	0.101(2)
C(110)	0.116(1)	0.104(1) 0.275(1)	0.111(2)
C(121)	0.110(1)	0.275(1)	0.002(1)
C(122)	0.122(1)	0.505(1)	0.000(1)
C(123)	0.973(1)	0.0//(1)	0.037(1)
C(124)	0.073(2)	0.089(2)	0.007(1)
C(123)	-0.078(1)	0.264(1)	0.007(1)
C(120)	0.014(2)	0.205(1)	0.107(1)
C(131)	0.350(1)	0.305(1)	0.087(1)
C(132)	0.414(1)	0.390(1)	0.139(1)
C(133)	0.504(2)	0.432(2)	0.107(1)
C(134)	0.583(2)	0.377(2)	0.026(1)
	0.520(2)	0.717(2)	0.024(1)
C(136)	0.388(2)	0.245(1)	0.005(1)
C(141)	0.243(2)	0.329(1)	0.246(1)
C(142)	0.178(2)	0.405(1)	0.277(1)
C(143)	0.181(2)	0.461(1)	0.368(1)
C(144)	0.249(2)	0.438(2)	0.426(1)
C(145)	0.307(2)	0.360(2)	0.393(1)
C(146)	0.308(2)	0.301(1)	0.304(1)
C(211)	0.250(1)	0.922(1)	0.390(1)
C(212)	0.342(1)	0.980(1)	0.448(1)
C(213)	0.385(2)	1.068(1)	0.437(2)
C(214)	0.333(2)	0.094(1)	0.373(1)
C(215)	0.242(2)	0.034(2)	0.320(1)
C(216)	0.200(2)	0.947(1)	0.323(1)
C(221)	0.064(1)	0.806(1)	0.428(1)
C(222)	0.032(2)	0.731(2)	0.455(1)
C(223)	0.922(2)	0.719(2)	0.476(1)

Atom	x	у	Z	
C(224)	0.849(2)	0.780(2)	0.466(2)	
C(225)	0.880(2)	0.855(2)	0.439(2)	
C(226)	0.993(2)	0.870(2)	0.417(1)	
C(231)	0.289(1)	0.780(1)	0.472(1)	
C(232)	0.342(1)	0.697(1)	0.445(1)	
C(233)	0.401(2)	0.673(1)	0.508(1)	
C(234)	0.591(2)	0.264(2)	0.402(1)	
C(235)	0.643(2)	0.178(2)	0.376(1)	
C(236)	0.707(1)	0.154(1)	0.436(1)	
C(241)	0.204(1)	0.714(1)	0.287(1)	
C(242)	0.113(1)	0.639(1)	0.243(1)	
C(243)	0.125(2)	0.564(1)	0.162(1)	
C(244)	0.223(2)	0.567(1)	0.122(1)	
C(245)	0.309(2)	0.641(2)	0.162(1)	
C(246)	0.300(2)	0.716(1)	0.246(1)	

Tabelle 3 (Fortsetzung)

In der Strukturdarstellung (Fig. 2) fällt auf, daß die Temperaturfaktoren für die beiden S-Atome bedeutend kleiner, die für die Atome Se(5) und Se(6) größer sind als die der anderen Ringatome. Dies spricht für eine Fehlordnung im Kristall, bei der die Liganden teils um 180° gedreht vorliegen. Bei Freigabe der Populationsparameter für S(1), S(2), Se(5) und Se(6) gleichen sich die Temperaturparameter an, der *R*-Wert verbesserte sich von 9.8 auf 7.9% (die in Tab. 2 und 3 angegebenen Strukturparameter bzw. Ortskoordinaten resultieren aus dieser verbesserten Rechnung). Es bleiben allerdings noch Restmaxima in der Nähe der Nachbaratome, die sicher dafür verantwortlich sind, daß kein besserer *R*-Wert erzielt wurde. Es muß damit gerechnet werden, daß durch diese Fehlordnung die Abstände zu den Sund Ring-Se-Atomen etwas verfälscht sind.

Dank

Herrn Prof. Dr. G. Dube, Analytisches Zentrum Berlin, danken wir für die Aufnahme der Massenspektren. Dem Fonds der Chemischen Industrie sei für die finanzielle Unterstützung dieser Arbeit gedankt.

Literatur

- 1 Übersichten zu Tetrachalkogenafulvalenen: (a) G. Schukat, A.M. Richter und E. Fanghänel, Sulfur Reports, 7 (1987) 155; (b) A. Krief, Tetrahedron, 42 (1986) 1209; (c) M. Narita und C.U. Pittmann, Jr., Synthesis, (1976) 489.
- 2 S. Alvarez, R. Vicente und R. Hoffmann, J. Am. Chem. Soc., 107 (1985) 6253.
- 3 (a) M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas und L.V. Interrante, J. Am. Chem. Soc., 108 (1986) 1908; (b) L. Brossard, H. Hurdequint, R. Ribault, L. Valade, J.-P. Legros und P. Cassoux, Synth. Met., 27 (1988) B157.
- 4 A. Kobayashi, H. Kim, Y. Sasaki, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita und W. Sasaki, Chem. Lett., (1987) 1819.
- 5 E. Aharon-Shalom, J.Y. Becker, J. Bernstein, S. Bittner und S. Shaik, Tetrahedron Lett., 26 (1985) 2738.
- 6 (a) N. Okada, H. Yamochi, F. Shinozaki, K. Oshima und G. Saito, Chem. Lett., (1986) 1861; (b) H. Yamochi, N. Iwasawa, H. Urayama und G. Saito, Chem. Lett., (1987) 2265.

- 7 (a) P.J. Nigrey, Synth. React. Inorg. Met.-Org. Chem., 16 (1986) 1351; (b) P.J. Nigrey, J. Org. Chem.,
 53 (1988) 201; (c) P.J. Nigrey, B. Morosin und J.F. Kwak, in S.A. Wolf und V.Z. Kresin (Hrsg.),
 Novel Superconductivity, Plenum Press, New York, 1987, S. 171.
- 8 V.Y. Lee, Synth. Met., 20 (1987) 161.
- 9 S.-Y. Hsu und L.Y. Chiang, J. Org. Chem., 52 (1987) 3444.
- 10 S. Rajeswari, Y.A. Jackson und M.P. Cava, J. Chem. Soc., Chem. Commun., (1988) 1089.
- 11 A.M. Kini, B.D. Gates, M.A. Beno und J.M. Williams, J. Chem. Soc., Chem. Commun., (1989) 169.
- 12 Zur Darstellung und präparativen Nutzung von C₃S₅²⁻: (a) G. Steimecke, H.J. Sieler, R. Kirmse und E. Hoyer, Phosphorus Sulfur, 7 (1979) 49; (b) P. Jeroschewski und P. Hansen, Sulfur Reports, 7 (1986) 1; (c) H. Poleschner, W. John, F. Hoppe, E. Fanghänel und S. Roth, J. Prakt. Chem., 325 (1983) 957.
- 13 (a) G. Matsubayashi, K. Akiba und T. Tanaka, J. Chem. Soc., Dalton Trans., (1990) 115; (b) G. Matsubayashi und A. Yokozawa, J. Chem. Soc., Dalton Trans., (1990) 3013; (c) G. Matsubayashi und A. Yokozawa, J. Chem. Soc., Dalton Trans., (1990) 3535; (d) G. Matsubayashi und A. Yokozawa, Chem. Lett., (1990) 355.
- 14 H. Nakano, T. Nogami und Y. Shirota, Bull. Chem. Soc. Jpn., 61 (1988) 2973.
- 15 (a) E.M. Engler, D.G. Green und J.A.Q. Chambers, J. Chem. Soc., Chem. Commun., (1976) 148; (b)
 V.Y. Lee, E.M. Engler, R.R. Schumaker und S.S.P. Parkin, J. Chem. Soc., Chem. Commun., (1983) 235.
- 16 (a) R.-M. Olk, W. Dietzsch und E. Hoyer, Synth. React. Inorg. Met.-Org. Chem., 14 (1984) 915; (b)
 R.-M. Olk, W. Dietzsch, J. Mattusch, J. Stach, C. Nieke, E. Hoyer, W. Weiler und W. Robien, Z. Anorg. Allg. Chem., 544 (1987) 199.
- 17 H. Poleschner, Kolloquiumsvortrag, Universität Leipzig, 6.3.1987.
- 18 (a) R.-M. Olk, A. Röhr, B. Olk und E. Hoyer, Z. Chem., 28 (1988) 304; (b) R.-M. Olk, A. Röhr, J. Sieler, K. Köhler, R. Kirmse, W. Dietzsch, E. Hoyer und B. Olk, Z. Anorg. Allg. Chem., 577 (1989) 206.
- 19 R.-M. Olk, B. Olk, W. Dietzsch und E. Hoyer, Z. Chem., 29 (1989) 250.
- 20 (a) H. Poleschner und E. Fanghänel, J. Prakt. Chem., 324 (1982) 691; (b) H. Poleschner, J. Böttcher und E. Fanghähnel, Synthesis, (1984) 667; (c) H. Poleschner, Z. Chem., 26 (1986) 138.
- 21 R.-M. Olk, C. Semmelmann, R. Kirmse, K. Köhler, E. Hoyer und B. Olk, Z. Anorg. Allg. Chem., 581 (1990) 59.
- 22 R.-M. Olk, B. Olk, J. Rohloff und E. Hoyer, Z. Chem., 30 (1990) 445.
- 23 G.C. Papavassiliou, V.C. Kakoussis, D.J. Lagouvardos und G.A. Mousdis, Mol. Cryst. Liq. Cryst., 181 (1990) 171.
- 24 K.R. Gayathri Devi, D.N. Sathyanarayana und E.M. Engler, J. Mol. Struct., 71 (1981) 1.
- 25 H. Poleschner, R. Radeglia und E. Fanghänel, J. Prakt. Chem., 323 (1981) 737.
- 26 Zur ⁷⁷Se-NMR von Diseleno-Komplexen: (a) W.-H. Pan und J.P. Fackler, Jr., J. Am. Chem. Soc., 100 (1978) 5783; (b) P. Granger, B. Gautheron, G. Tainturier und S. Pouly, Org. Magn. Reson., 22 (1984) 701; (c) W. Dietzsch, R.-M. Olk, E. Hoyer, W. Meiler und W. Robien, Org. Magn. Reson., 26 (1988) 653.
- 27 H. Poleschner, R. Radeglia und H. Meyer, Org. Magn. Reson., 22 (1984) 480.
- 28 Übersichten zur ⁷⁷Se-NMR: (a) C. Rodger, N. Sheppard, H.C.E. McFarlane und W. McFarlane, in R.K. Harris und B.E. Mann (Hrsg.), NMR and the Periodic Table, Academic Press, London-New York, 1978, S. 402; (b) H. Iwamura und W. Nakanishi, J. Synth. Org. Chem. Jpn., 39 (1981) 795; (c) M. Baiwir, Proc. 4th Int. Conf. on Org. Chem. Selenium Tellurium, B. Frank (Hrsg.), Birmingham, 1983, S. 406; (d) N.P. Luthra und J.D. Odom, in S. Patai und Z. Rappoport (Hrsg.), The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 1, Wiley, Chichester, 1986, S. 189.
- 29 L. Christiaens, J.-L. Piette, L. Laitem, M. Baiwir, J. Denoel und G. Llabres, Org. Magn. Reson., 8 (1976) 354.
- 30 G.P. Mullen, N.P. Luthra, R.B. Dunlap und J.D. Odom, J. Org. Chem., 50 (1985) 811.
- 31 (a) D.J.G. Ives, R.W. Pittman und W. Wardlaw, J. Chem. Soc., (1947) 1080; (b) A. Rosenbaum, H. Kirchberg und E. Leibnitz, J. Prakt. Chem., 4. Reihe, 19 (1963) 1; (c) L. Henriksen und E.S.S. Kristiansen, Int. J. Sulfur Chem., Part A, 2 (1972) 133; (d) W.-H. Pan, J.P. Fackler, Jr. und H.-W. Chen, Inorg. Chem., 20 (1981) 856.
- 32 M.V. Lakshmikantham und M.P. Cava, J. Org. Chem., 45 (1980) 2632.
- 33 R. Mayer, H. Hartmann, J. Fabian und A. Mehlhorn, Z. Chem., 7 (1967) 209.
- 34 H. Poleschner und R. Radeglia, Phosphorus Sulfur, 29 (1987) 187.

- 230
- 35 H. Poleschner, R. Radeglia, M. Kuprat, A.M. Richter und E. Fanghänel, J. Organomet. Chem., 327 (1987) 7.
- 36 H.O. Kalinowski, S. Berger und S. Braun, ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, 1984.
- 37 D.F. Ewing, Org. Magn. Reson., 12 (1979) 499.
- 38 O. Lindqvist, L. Andersen, J. Sieler, G. Steimecke und E. Hoyer, Acta Chem. Scand., Ser. A, 36 (1982) 855.
- 39 G. Matsubayashi, T. Takahashi und T. Tanaka, J. Chem. Soc., Dalton Trans., (1988) 968.
- 40 O. Simonsen, K.S. Varma, A. Clark und A.E. Underhill, Acta Crystallogr., Sect. C, 46 (1990) 804.
- 41 R.N. Ljubovskaya, J.D. Lipschan, O.N. Krasotschka und L.O. Atovmjan, Izv. Akad. Nauk SSSR, Ser. Khim., (1976) 179.
- 42 T.J. Kristenmacher, T.J. Emge, P. Shu und D.O. Cowan, Acta Crystallogr., Sect. B, 35 (1979) 772.
- 43 L.R. Melby, H.D. Hartzler und W.A. Sheppard, J. Org. Chem., 39 (1974) 2456.
- 44 E.M. Engler und V.V. Patel, J. Org. Chem., 40 (1975) 387.
- 45 D. Sülze und H. Schwarz, Angew. Chem., 100 (1988) 1384.
- 46 G.M. Sheldrick, SHELXS-86, Institut für Anorganische Chemie, Universität Göttingen, 1986.
- 47 S.R. Hall und J.M. Stewart (Hrsg.), XTAL 2.2, Users Manual, Universities of Western Australia and Maryland, 1988.
- 48 N. Walker und D. Stuard, Acta Crystallogr., Sect. A, 39 (1983) 158.
- 49 International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham, 1968.